\"\"

\

The function is \"\" and \"\", \"\", \"\"

\

(a)

\

Find the Taylor polynomial with degree \"\" at the number \"\".

\

Definition of Taylor series:

\

If a function \"\" has derivatives of all orders at \"\" then the series

\

\"\" is called Taylor series for \"\" at \"\".

\

First find the successive derivatives of \"\".

\

\"\"

\

Apply derivative on each side with respect to \"\" .

\

\"\"

\

\"\"

\

\"\" \ \

\

Find the values of the above functions at \"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\"

\

The series is centered at \"\". 

\

Taylor series centered at \"\". 

\

\"\".

\

\"\" 

\

\"\". \ \

\

\"\"

\

(b)

\

The taylors inequality is \"\" where  \"\".

\

Here \"\", \"\" and \"\".

\

Substitute  \"\" in \"\"

\

 \"\"in \ \

\

Hence, \"\".

\

\"\"

\

\"\".

\

\"\".

\

The value of \"\" ,hence the value of should be \"\".

\

\"\"

\

\"\"

\

The taylors accuracy inequality is \"\".

\

\"\"

\

(c)

\

The value is \"\".

\

Here \"\".

\

\"\"

\

Substitute \"\" and \"\".

\

\"\".

\

Graph :

\

Graph the function \"\".

\

\"\"

\

Observe the graph:

\

The functions \"\" for small value of \"\" in the interval \"\".

\

\"\"

\

(a) \"\".

\

(b) \"\"

\

(c)

\

Graph of the function \"\" is

\

\"\"

\

Observe the graph:

\

The functions \"\" for small value of \"\" in the interval \"\".