\"\"

\

The function is \"\".

\

The function is centered at \"\".

\

Definition of Taylor series:

\

If a function \"\" has derivatives of all orders at \"\" then the series \"\" is called Taylor series for \"\" at \"\".

\

First find the successive derivatives of \"\".

\

\"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\".

\

\"\".

\

\"\".

\

The series is centered at \"\".

\

Find the values of the functio at \"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\".

\

\"\"

\

Find the Taylor polynonial \"\".

\

Taylor polynomia is \"\".

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

Graph:

\

Graph the polynomials \"\" and \"\".

\

\"\"

\

\"\"

\

\"\".

\

Graph the polynomials \"\" and \"\".

\

\"\".