\"\"

\

Second derivatives test :

\

If f  have continuous partial derivatives on an open region containing a point \"\" for which   

\

\"\" and \"\".

\

To test for relative extrema of f , consider the quantity

\

\"\"

\

1. If \"\" and \"\", then f  has a relative minimum at \"\".

\

2. If \"\" and \"\", then f  has a relative maximum at \"\".

\

3. If \"\" and then \"\" is a saddle point. 

\

4. The test is inconclusive if \"\".

\

\"\"

\

The function is \"\".

\

The domain is \"\"

\

Apply partial derivative on each side with respect to x.

\

\"\"

\

Differentiate \"\" partially with respect to x.

\

\"\"

\

Differentiate \"\" partially with respect to y.

\

\"\"

\

\"\"

\

The function is \"\"

\

Apply partial derivative on each side with respect to y

\

\"\"

\

Differentiate \"\" partially with respect to y.

\

\"\"

\

Differentiate \"\" partially with respect to x.

\

\"\"

\

\"\"

\

Find the critical points :

\

Equate \"\"  to zero.

\

\"\"

\

Equate \"\" to zero.

\

\"\"

\

Substitute \"\" in equation (1).

\

\"\"

\

Substitute \"\" in equation (1).

\

\"\"

\

The critical points are \"\" and \"\".\"\"

\

Find the value of f  at the critical points :

\

Find the quantity D 

\

At the point \"\".

\

\"\"

\

Since \"\" and \"\", the function f  has a local minimum at \"\".

\

Substitute the point \"\" in \"\".

\

\"\"

\

The local minimum is \"\"

\

At the point \"\".

\

\"\"

\

Since \"\", the graph has saddle point at \"\".\"\"

\

Find the value of f  at the boundary points :

\

The domain of the function is \"\".

\

\"\"

\

Find the quantity D 

\

At the point \"\".

\

\"\"

\

Since \"\", the graph has saddle point at \"\".

\

At the point \"\".

\

\"\"

\

Since \"\" and \"\", the function f  has a local minimum at \"\". 

\

Substitute the point \"\" in \"\".

\

\"\"

\

The local minimum is \"\"\"\"

\

The local minimum is \"\" and \"\"