\"\"

\

Method of Lagrange Multipliers :

\

To find the minimum or maximum values of \"\" subject to the constraint \"\".

\

(a). Find all values of x, y, z and \"\" such that

\

\"\" and \"\".

\

(b). Evaluate f  at all points that results from step (a). The largest of these values is the maximum value off,  the smallest is the minimum value of f.

\

\"\"

\

The function is \"\".

\

The constraint is \"\".

\

Consider \"\"

\

Find the gradient \"\" :

\

\"\"

\

Find the gradient \"\" :

\

\"\"

\

\"\"

\

Write the system of equations :

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Multiply equation (1) by x :

\

\"\"

\

Multiply equation (2) by y :

\

\"\"

\

Multiply equation (3) by z :

\

\"\"

\

\"\"

\

Equate equation (4) and equation (5) :

\

\"\"

\

Equate equation (5) and equation (6) :

\

\"\"

\

\"\"

\

Substitute \"\" and \"\" in the constraint \"\".

\

\"\"

\

Substitute \"\" in \"\".

\

\"\"

\

Substitute \"\" in \"\".

\

\"\"

\

The points are \"\" and \"\".

\

\"\"

\

Substitute the point \"\" in the function \"\".

\

\"\"

\

Substitute the point \"\" in the function \"\".

\

\"\"

\

The minimum value is \"\"

\

The maximum value is \"\" \ \

\

\"\"

\

The minimum value is \"\"

\

The maximum value is \"\"