\"\"

\

The buoy oscillates in simple harmonic motion \"\".

\

Where \"\" is amplitude, \"\" is angular velocity, and \"\" is time.

\

The buoy moves total distance is \"\" feet.

\

The buoy returns its high point for every \"\" seconds.

\

(a)

\

Write an equation describing the motion of the buoy if it is at its high point at \"\".

\

The amplitude at high point is \"\".

\

The angular velocity is \"\".

\

\"\".

\

Substitute \"\" and \"\" in \"\".

\

\"\"

\

The equation is \"\".

\

\"\"

\

(b)

\

Determin the velocity of the buoy as a function of \"\".

\

Velocity of an object is rate of change of the displacement.

\

\"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

(a) The equation is \"\".

\

(b) The velocity of buoy is \"\".