\"\"

\

Definition of local extrema :

\

Functions can have "hills and valleys"  places where they reach a minimum or maximum value.

\

Definition of absolute extrema :

\

The maximum or minimum over the entire function is called an "Absolute" or "Global" maximum or minimum.

\

There is only one global maximum (and one global minimum) but there can be more than one local maximum or minimum.

\

Now observe the graph :

\

Point A is absolute minimum.

\

Point B is absolute maximum.

\

Point C is neither maximum nor minimum.

\

Point D is relative minimum.

\

Point E is relative maximum.

\

Point F is relative minimum.

\

Point G is neither maximum nor minimum.

\

\"\"

\

Point A is absolute minimum.

\

Point B is absolute maximum.

\

Point C is neither maximum nor minimum.

\

Point D is relative minimum.

\

Point E is relative maximum.

\

Point F is relative minimum.

\

Point G is neither maximum nor minimum.