\"\"

\

The function is \"\" and \"\".

\

Rolle\"\"s theorem :

\

Let \"\" be a function that satisfies the following three hypotheses.

\

1. \"\" is continuous on \"\".

\

2. \"\" is differentiable on \"\".

\

3. \"\".

\

Then there is a number \"\" in \"\" such that \"\".

\

\"\"

\

The function is \"\".

\

The function \"\" is continuous on the interval \"\".

\

Substitute \"\" in \"\".

\

\"\"

\

\"\"

\

\"\".

\

Substitute \"\" in \"\".

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

Rolle\"\"s theorem is applicable.

\

\"\"

\

The function \"\".

\

Differentiating on each side with respect to \"\".

\

Apply Quotient rule in derivatives \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\" is differentiable on the open interval \"\", which satisfies the Rolle\"\"s Theorem.

\

\"\"

\

\"\"

\

\"\"

\

Solve the equation \"\".

\

Compare it to  \"\"

\

\"\"

\

Roots are \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"  is in the interval \"\".

\

\"\"

\

The function \"\" satisfy the rolle\"\"s theorem.

\

\"\".