\"\"

\

Rolles Theorem :

\

Let \"\" be a function that satisfies the following three hypotheses.

\

1. \"\"  is continuous on \"\".

\

2. \"\"  is differentiable on \"\".

\

3. \"\".

\

Then there is a number \"\" in \"\" such that \"\".

\

\"\"

\

The function is \"\", over the interval \"\".

\

Substitute \"\" in the function.

\

\"\"

\

Substitute \"\" in the function.

\

\"\"

\

\"\".

\

\"\"

\

Differentiate on each side \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Denominator should be zero.

\

So the function is not differentiable over \"\"

\

\"\"

\

\"\"; but  f is not differentiable on \"\".