\"\"

\

(a)

\

The function is \"\".

\

Find the secant line passing through the points \"\" and \"\".

\

The equation of a secant line passing through two points is \"\"

\

\"\"

\

The equation of secant line is \"\".

\

\"\"

\

(b)

\

Mean value Theorem :

\

If \"\" is continuous on \"\" and differentiable on open interval \"\", then there exists a number \"\" in \"\" such that \"\".

\

The function \"\" is continuous on the interval \"\" and differentiable on the interval \"\".

\

So there exists a number \"\" in \"\" such that \"\".

\

\"\"

\

The function is \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

The value of \"\" in the interval \"\" is \"\".

\

\"\"

\

\"\"

\

(c)

\

Find the equation of tangent line passing through \"\" and whose slope is parallel to slope of the secant line.

\

The secant line equation is \"\".

\

\"\"

\

Compare the above equation with the slope intercept form \"\".

\

The slope of the secant line is \"\".

\

Point slope form of the equation is \"\".

\

\"\"

\

Therefore the equation of tangent line is \"\".

\

\"\"

\

(d)

\

Graph the function and tangent line \"\".

\

\"\"

\

\"\"

\

(a) The equation of secant line is \"\".

\

(b) The value of \"\" in the interval \"\" is \"\".

\

(c) The equation of tangent line is \"\".

\

(d)

\

\"\".