\"\"

\

The function is \"\" and \"\".

\

Mean value Theorem :

\

If \"\" is continuous on \"\" and differentiable on open interval \"\", then there exists a number \"\" in \"\" such that \"\".

\

The function \"\" is continuous at the point \"\" in its domain if :

\

1. \"\" exists,

\

2. \"\".

\

Here \"\" and \"\".

\

So \"\".

\

The function is continuous over the interval \"\".

\

\"\"

\

Check for differentiability.

\

\"\"

\

\"\"

\

Right hand limit :\"\".

\

Left hand limit : \"\".

\

The left hand limit and right hand limits are not equal at \"\".

\

So the function is not differentiable at \"\".

\

The function is not differentiable on the closed interval \"\".

\

So the mean value theorem does not apply to the function.

\

\"\"

\

The mean value theorem does not apply to the function.