\"\"

\

The function is \"\", \"\".

\

(a)

\

Graph :

\

Sketch the function \"\" over \"\".

\

\"\"

\

\"\"

\

(b)

\

The slope of the secant line through \"\" and \"\" is

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

To find the secant line equation, use the point - slope form of line equation.

\

The point - slope form of line equation is \"\".

\

Consider one point is \"\".

\

\"\"

\

Graph :

\

Sketch the function \"\" and secant line \"\" .

\

\"\"

\

\"\"

\

(c)

\

The function satisfy the condition for mean value theorem , therefore there exist at least one number \"\" in the \"\", such that \"\".

\

\"\"

\

Apply derivative with respect to \"\".

\

\"\"

\

\"\"

\

The values of \"\" are \"\" and \"\".

\

The function two tangent line in the given interval.

\

First tangent line :

\

The point of tangency is \"\".

\

\"\"

\

The point of tangency is \"\".

\

Slope of tangent \"\".       [Since secant line is parallel to tangent line]

\

The point - slope form of line equation is \"\".

\

\"\"

\

Second tangent line :

\

The point of tangency is \"\".

\

\"\"

\

The point of tangency is \"\".

\

Slope of tangent \"\" .     [Since secant line is parallel to tangent line]

\

The point - slope form of line equation is \"\".

\

\"\"

\

Graph :

\

Sketch the function \"\", secant line \"\" and tangent lines \"\" and \"\".

\

\"\"

\

\"\"

\

(a) Graph of the function \"\" is

\

\"\"

\

(b) The secant line equation \"\".

\

Graph of the secant line \"\" is

\

\"\"

\

(c) The tangent line equations are \"\" and \"\".

\

Graph of the tangent line are \"\" and \"\" is

\

\"\".