\"\"

\

The height of an object after \"\" sec is \"\".

\

(a)

\

Find the average velocity of the \"\" over \"\".

\

The average velocity is \"\".

\

\"\"

\

Therefore the average velocity of the object is \"\".

\

\"\"

\

(b)

\

The function \"\" is continuous over closed interval \"\", and differentiable on the open interval.

\

Therefore mean value theorem can be applied.

\

So, there exists at least one number \"\" in \"\" such that \"\".

\

\"\"

\

Apply derivative with respect to \"\".

\

\"\"

\

So \"\".

\

\"\"

\

Therefore from the Mean Value Theorem at \"\" sec, the instantaneous velocity equals the average velocity. 

\

\"\"

\

The average velocity of the object is \"\".

\

The time where instantaneous velocity equals the average velocity is \"\" sec.