\"\"

\

(a)

\

The function is \"\".

\

Find the critical numbers by equating the first derivative to \"\".

\

\"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

Equate the derivative to \"\".

\

\"\"

\

So the function has critical number at \"\".

\

\"\"

\

(b)

\

The critical point is \"\", consider the table summarizes the testing of two intervals determined by the critical number.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Test interval\"\"\"\"
 Test value \"\" \"\"
Sign of \"\" \"\" \"\"
Conclusion Increasing \

 Decreasing

\
\

The function \"\" is increasing on the interval \"\" and decreasing on the interval \"\".

\

\"\"

\

(c)

\

Use first derivative test to identify all relative extrema.

\

\"\" changes from positive to negative . [From (b) ]

\

Therefore according to First derivative test, the function has maximum at \"\".

\

The function \"\" has a relative maximum at \"\".

\

Find \"\".

\

\"\"

\

So the function \"\" has relative maximum at \"\".

\

\"\"

\

(d)

\

Graph :

\

Graph the function is \"\".

\

\"\"

\

Observe the graph :

\

The function has critical number at \"\".

\

The function \"\" is increasing on the interval \"\" and decreasing on the interval \"\".

\

The function \"\" has relative maximum at \"\".

\

\"\"

\

(a) The function has critical number at \"\".

\

(b) The function \"\" is increasing on the interval \"\" and decreasing on the interval \"\".

\

(c) The function \"\" has relative maximum at \"\".

\

(d) Graph of the function \"\".

\

\"\".