\"\"

\

(a)

\

The function is \"\".

\

Find the critical numbers by applying derivative.

\

\"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

Equate the derivative to \"\".

\

\"\" 

\

\"\"

\

Equate the derivative to \"\".

\

\"\"

\

Therefore the critical number is  \"\".

\

\"\"

\

(b)

\

Consider the test intervals to find the interval of increasing and decreasing.

\

Test intervals are \"\" and \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Test intervalTest valueSign of \"\"Conclusion
\"\"\"\" \

\"\"

\
Increasing
\"\"\"\" \

\"\"

\
Decreasing
\

The function \"\" is increasing on the interval \"\".

\

The function \"\" is decreasing on the interval \"\".

\

\"\"

\

(c)

\

Use first derivative test to identify all relative extrema.

\

At the critical point \"\", the function is discontinuous.

\

So no relative extremas are exist.

\

\"\"

\

(d)

\

Graph the function is \"\".

\

\"\"

\

\"\"

\

(a)

\

Critical number is  \"\".

\

(b)

\

The function \"\" is increasing on the interval \"\".

\

The function \"\" is decreasing on the interval \"\".

\

(c)

\

Does not have any exreme points.

\

(d)

\

Graph of the function is \"\".

\

\"\".