\"\"

\

(a)

\

The function is \"\".

\

Find the critical numbers by applying derivative.

\

\"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

Equate the derivative to \"\".

\

\"\"

\

For \"\".

\

\"\"

\

Equate the derivative to \"\".

\

\"\"

\

Therefore the critical number is \"\".

\

The function has a discontinuity at \"\".

\

\"\"

\

(b)

\

Consider the test intervals to find the interval of increasing and decreasing.

\

Test intervals are \"\", \"\" and \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Test intervalTest valueSign of \"\"Conclusion
\"\"\"\" \

\"\"

\
Increasing
\"\"\"\" \

\"\"

\
Decreasing
\"\"\"\" \

\"\"

\
Increasing
\

The function \"\" is increasing on the interval \"\" and \"\".

\

The function \"\" is decreasing on the interval \"\".

\

\"\"

\

(c)

\

Use first derivative test to identify all relative extrema.

\

At the critical point \"\", the function is discontinuous.

\

So no relative extremas are exist at \"\".

\

\"\" changes from negative to positive at \"\". [From (b)]

\

Therefore according to first derivative test , the function has minimum at \"\".

\

The function \"\" has a relative minimum at \"\".

\

Find \"\".

\

\"\"

\

So the function \"\" has relative minimum at \"\".

\

\"\"

\

(d)

\

Graph the function is \"\".

\

\"\"

\

\"\"

\

(a)

\

Critical number is  \"\".

\

(b)

\

The function \"\" is increasing on the interval \"\" and \"\".

\

The function \"\" is decreasing on the interval \"\".

\

(c) 

\

The function \"\" has relative minimum at \"\".

\

(d)

\

Graph of the function is \"\".

\

\"\".