\"\"

\

(a)

\

The function is \"\".

\

Find the critical numbers by applying derivative .

\

\"\"

\

Equate it to zero .

\

\"\"

\

The critical number is \"\".

\

Consider the test intervals to find the interval.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Interval\"\"\"\"\"\"
Test value\"\"\"\"\"\"
Sign of \"\" \

\"\"

\
\

\"\"

\
\

\"\"

\
ConclusionIncreasingDecreasingIncreasing
\

\"\"

\

(b)

\

Use first derivative test to identify all relative extrema.

\

\"\" changes from positive to negative at \"\". [From (a)]

\

Therefore according to first derivative test , the function has maximum at \"\".

\

When \"\" , \"\".

\

The relative maximum point is \"\".

\

\"\" changes from negative to positive at \"\". [From (a)]

\

Therefore according to first derivative test , the function has minimum at \"\".

\

When \"\" , \"\".

\

The relative minimum point is \"\".

\

\"\"

\

(c)

\

Graph the function \"\" to verify the above result .

\

\"\"

\

\"\"

\

(a) \"\" is increasing over intervals \"\" and \"\".

\

     \"\" is decreasing over interval \"\".

\

(b) The relative maximum point is \"\".

\

       The relative minimum point is \"\".

\

(c)

\

\"\".