\"\"

\

(a)

\

Graph the derivative function with the points:

\

Graph :

\

1. Draw the coordinate plane.

\

2. Plot the points.

\

3. Connect the points with a smooth curve.

\

\"\"

\

Observe the derivative graph :

\

Critical points are the points where the \"\" curve touches the \"\" - axis.

\

From the graph the critical points are \"\" and \"\".

\
\

\"\"

\

(b)

\

From the first derivative test if \"\" positive on the interval \"\", then the function \"\" increases on the interval \"\".

\

The graph \"\" is decreasing on \"\" since \"\" on \"\".

\

The graph \"\" is increasing on \"\" since \"\" on \"\".

\

The graph \"\" is again decreasing on \"\" since \"\" on \"\".

\

Now draw the rough graph of \"\". 

\
\
\

\"\"

\

\"\"

\

(c)

\

Use first derivative test to identify all relative extrema.

\

\"\" changes from negative to positive at \"\".

\

Therefore according to first derivative test,the function has minimum at \"\".

\

\"\" changes from positive to negative at \"\".

\

Therefore according to first derivative test,the function has maximum at \"\".

\
\

\"\"

\
\

(a)

\

\"\"

\

(b) Critical points are \"\" and \"\".

\

(c) \"\" has minimum at \"\".

\

     \"\" has maximum at \"\".

\