\"\"

\

The function is \"\".

\

Domain :

\

The function \"\".

\

The function is a rational function, therefore denominator should not be equal to zero.

\

\"\"

\

\"\".

\

The function \"\" continuous for all the points except at \"\".

\

Thus, the domain of the function \"\" is \"\".

\

Intercepts :

\

y - intercept is \"\":

\

\"\"

\

Thus, \"\" - intercept is \"\".

\

\"\" - intercept :

\

Consider \"\" and solve for x.

\

\"\"

\

Thus, \"\" - intercept is \"\".

\

\"\"

\

Symmetry :

\

If \"\", then the function \"\" is even and it is symmetric about \"\"-axis.

\

If \"\", then the function \"\" is odd and it is symmetric about origin.

\

\"\"

\

Here \"\".

\

Thus, the function \"\" is neither even nor odd.

\

\"\"

\

Asymptotes :

\

Vertical asymptote : 

\

Vertical asymptote exist when denominator is zero.

\

Equate denominator to zero.

\

\"\"

\

Vertical asymptote is \"\".

\

Horizontal asymptote:

\

The line \"\" is called a horizontal asymptote of the curve \"\" if either

\

\"\"  or \"\"

\

\"\"

\

\"\"

\

Thus, the horizontal asymptote is  \"\".

\

\"\"

\

Intervals of increase or decrease :

\

\"\"

\

Differentiate on each side  with respect to x:

\

\"\"

\

\"\".

\

\"\" is never zero on its domain.

\

f  is increasing on its domain because \"\"

\

Determination of extrema :

\

f  is an increasing function, hence there is no chance of local minimum or maximum.

\

\"\"

\

Graph of the function \"\" :  

\

\"\". 

\

\"\"

\

Graph of the function \"\" :  

\

\"\".