\"\"

\

The right triangle is formed in the first quadrant by the \"\"-axis and \"\"-axis and a line through the point is \"\".

\

Observe the triangle :

\

The slope of \"\" and \"\" is equal to the slope of \"\" and \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

(a)

\

Find the length \"\" of the hypotenuse as a function of \"\".

\

Length of the hypotenuse is \"\".

\

Substitute \"\".

\

\"\"

\

Length of the hypotenuse is \"\".

\

\"\"

\

(b)

\

Graph :

\

Graph the function \"\" and label the minimum point.

\

\"\"

\

Observe the graph :

\

The length of the hypotenuse \"\" is minimum when \"\".

\

\"\"

\

(c)

\

Find the vertices of the triangle such that its area is a minimum.

\

The area of the right triangle is \"\".

\

Substitute \"\".

\

\"\"

\

\"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

Find the critical numbers by equating derivative to zero.

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\" and \"\".

\

The value of \"\" can not be zero.

\

Therefore, \"\".

\

Substitute \"\" in \"\".

\

\"\"

\

\"\".

\

The vertices of the triangle are \"\" and \"\".

\

\"\"

\

(a) Length of the hypotenuse is \"\".

\

(b)

\

Graph:

\

Graph the function \"\".

\

\"\"

\

The length of the hypotenuse \"\" is minimum when \"\".

\

(c) The vertices of the triangle are \"\" and \"\".