\"\"

\

Since the cross section is circular, perimeter of cylindrical package is \"\" is equals to \"\".

\

\"\"

\

\"\".

\

Volume of cylindrical package is \"\".

\

Substitute \"\" in \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Derivative on each side with respect to \"\".

\

\"\"

\

For maximum volume, \"\".

\

\"\"

\

\"\" and \"\"

\

\"\" and \"\".

\

\"\"

\

Consider \"\".

\

Derivative on each side with respect to \"\".

\

\"\"

\

\"\".

\

If \"\", then \"\".

\

By second derivative test, the volume is minimum at \"\".

\

If \"\", then \"\".

\

By second derivative test, the volume is maximum at \"\".

\

\"\"

\

If \"\", then \"\".

\

The volume is \"\".

\

Maximum volume : \"\".

\

Thus, the maximum volume of cylindrical package is \"\".

\

\"\"

\

The maximum volume of cylindrical package is \"\".