\

The function \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

(a) Graph of the function \"\":

\

\"\"

\

\

(b)

\

\"\".

\

Perform Newton approximation for \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\

Observe the table,

\

Zero of the function is \"\".

\

\

(c)

\

Perform Newton approximation for \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\

Observe the table,

\

Zero of the function is \"\".

\

\

(d)

\

The points \"\" and \"\".

\

\"\" and \"\".

\

Find the tangent lines.

\

At the point \"\":

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

At the point \"\":

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

Graph the tangent lines.

\

\"\"

\

Observe the graph :

\

The \"\"-intercept of \"\" is \"\".

\

The \"\"-intercept of \"\" is \"\".

\

The \"\"-intercepts correspond to the values resulting from the first iteration of Newton\"\" s method.

\

\

(e) If the initial estimate \"\" is not sufficiently close to the desired zero of a function, the \"\"-intercept of the corresponding tangent line to the function may approximate a second zero of the function.

\

\"\"

\

(a) Graph of the function \"\" :

\

\"\"

\

(b) Zero of the function is \"\".

\

(c) Zero of the function is \"\".

\

(d) The \"\"-intercept of \"\" is \"\".

\

The \"\"-intercept of \"\" is \"\".

\

The \"\"-intercepts correspond to the values resulting from the first iteration of Newton\"\" s method.

\

(e) If the initial estimate \"\" is not sufficiently close to the desired zero of a function, the \"\"-intercept of the corresponding tangent line to the function may approximate a second zero of the function.