\"\"

\

The man is in boat \"\" from the nearest point on the coast.

\

He is to go to a point \"\", located \"\" down the coast and \"\" inland.

\

\"\"

\

The man can row at speed of \"\" and walk at \"\".

\

Observe the diagram,

\

\"\" and \"\".

\

\"\"

\

\"\".

\

Here the time is considered for both the man can row in water and walking time.

\

The time taken by man to reach the point \"\" is \"\".

\

\"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\"

\

The man can reach the point \"\" in minimum time when \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

Let \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\".

\

Since \"\" and \"\", the solution is in the interval \"\".

\

Newton\"\"s approximation method formula : \"\".

\

Substitute \"\" and \"\".

\

\"\".

\

Perform Newton approximation for \"\".

\

The calculations for si iterations are shown in the table.

\ \
\ \
\ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"\"\"\"\"
\

Observe the table:

\

The minimum time approximation is \"\".

\

\"\"

\

The minimum time approximation is \"\".