\"\"

\

(a)

\

The definite integral is \"\", \"\".

\

Let \"\".

\

Error in Trapezoidal rule:

\

If \"image\" has a continuous second derivative on \"\", then the error approximating the integral \"\" by Trapezoidal Rule is \"\", \"\".

\

The function \"\".

\

First derivative is \"\".

\

Second derivative is \"\".

\

The second derivative is continuous on the interval \"\".

\

The maximum value of \"\" on the interval \"\" is \"\".

\

Approximate error in trapezoidal rule:

\

\"\"

\

Substitute \"\" and \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

Error in Trapezoidal Rule is \"\".

\

\"\"

\

(b)

\

The definite integral is \"\", \"\".

\

Error in Simpsons Rule:

\

If \"image\" has a continuous fourth derivative on \"\", then the error approximating the integral \"\" by Simpsons Rule is \"\", \"\".

\

The function \"\".

\

First derivative is \"\".

\

Second derivative is \"\".

\

Third derivative is \"\".

\

Fourth derivative is \"\".

\

The fourth derivative is continuous on the interval \"\".

\

The maximum value of \"\"on the interval \"\" is \"\".

\

Approximate error in Simpsons rule:

\

\"\"

\

Substitute \"\", \"\" and \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

Error in Simpsons rule is \"\".

\

\"\"

\

(a) Error in Trapezoidal rule is \"\".

\

(b) Error in Simpsons rule is \"\".