\"\"

\

(a)

\

The definite integral is \"\".

\

Let \"\".

\

The first derivative is \"\".

\

The second derivative is \"\".

\

The maximum value of \"\" on the interval \"\" is

\

\"\"

\

Approximate error in trapezoidal rule \"\".

\

Substitute \"\" and \"\".

\

\"\"

\

\"\"

\

Obtain an error \"\" that is less than \"\", choose \"\" such that \"\".

\

\"\"

\

\"\"

\

\"\".

\

The value of \"\" in trapezoidal rule is \"\".

\

\"\"

\

(b)

\

The function is \"\".

\

The first derivative is \"\".

\

The second derivative is \"\".

\

The third derivative is \"\".

\

The fourth derivative is \"\".

\

The maximum value of \"\" on the interval \"\" is \"\".

\

Approximate error in Simpsons rule \"\".

\

Substitute \"\" and \"\".

\

\"\"

\

Obtain an error \"\" that is less than \"\",choose \"\" such that\"\".

\

\"\"

\

\"\".

\

In Simpsons Rule \"\" must be even number, so round up to the next even integer.

\

The value of \"\" in Simpsons rule is \"\".

\

\"\"

\

(a) The value of \"\" in trapezoidal rule is \"\".

\

(b) The value of \"\" in Simpsons rule is \"\".