\"\"

\

The function \"\" is a positive and differentiable on entire real line.

\

(a) If \"\" is increasing, must \"\" be increasing.

\

Explain.

\

The function \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

The function \"\" is increasing and \"\" is positive.

\

\"\".

\

A function is increasing when its derivative is positive.

\

Therefore, the function \"\" is increasing.

\

\"\"

\

(b) If the graph of \"\" is concave upward, must the graph of \"\" be concave upward.

\

Explain.

\

A function is concave up when its double derivative is positive.

\

\"\"

\

Again apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

The \"\" is may or may not be positive, even though \"\".

\

\"\" is may or may not be concave upward if \"\" is concave upward.

\

Consider the function \"\".

\

The function \"\".

\

Graph the functions: \"\" and \"\".

\

\"\"

\

Observe the graph:

\

The function \"\" is concave up.

\

The function \"\"is concave down.

\

\"\" is may or may not be concave upward if \"\" is concave upward.

\

\"\"

\

(a) Yes. If \"\" is incerasing, must \"\" be increasing.

\

(b) \"\" is may or may not be concave upward if \"\" is concave upward.