\"\"

\

The functions is \"\".

\

(a)

\

Find an equation for the inverse of function \"\".

\

Consider \"\" and solve for \"\" in terms of \"\".

\

\"\"

\

Square roots on both sides.

\

\"\"

\

\"\"

\

Take out the common term \"\".

\

\"\"

\

\"\", for \"\".

\

Interchange \"\" and \"\".

\

\"\"

\

Replace \"\" by \"\".

\

\"\"\"\".

\

\"\"

\

(b)

\

Graph :

\

The functions is \"\" and inverse of the function is \"\".

\

\"\"

\

Observe the graph,

\

The two functions are symmetrical about the line \"\".

\

\"\" and \"\" are inverse functions.

\

\"\"

\

(c)

\

Find the relation between the graphs of the function and its inverse.

\

Find \"\".

\

\"\"

\

\"\"

\

Find \"\".

\

\"\"

\

\"\"

\

The composite function \"\" and \"\".

\

The inverse of function is \"\".

\

Therefore function \"\" and  \"\" are symmetric with respect to \"\".

\

\"\"

\

(d)

\

The functions is \"\" and inverse of the function is \"\".

\

Domain is the set of values of \"\" which makes the function mathematically correct.

\

Domain of \"\"  is set of all real numbers.

\

The domain of \"\" is \"\".

\

Range is the output values of the function.

\

Range of the \"\" is \"\".

\

Range of \"\" is set of all real numbers.

\

\"\"

\

(a)The inverse function of f is \"\".

\

(b) Graph :

\

The functions is \"\" and inverse of the function is \"\".

\

\"\"

\

Observe the graph,

\

The two functions are symmetrical about the line \"\".

\

\"\" and \"\" are inverse functions.

\

(c) The function \"\" and  \"\" are symmetric with respect to \"\".

\

(d)

\

Domain of \"\"  is set of all real numbers and the domain of \"\" is \"\".

\

Range of the \"\" is \"\"and Range of \"\" is set of all real numbers.