\"\"

\

(a)

\

The function is \"\".

\

The function \"\" is defined when \"\".

\

Therefore, the domain of the function \"\" is \"\".

\

\"\"

\

(b)

\

The function is \"\".

\

Rewrite the function as  \"\".

\

To find the inverse of a function interchange \"\" and \"\" terms.

\

\"\"

\

Defnition of logarithm : \"\" if and only if \"\".

\

\"\"

\

\"\".

\

The inverse function is \"\".

\

\"\"

\

(c)

\

In the function \"\" the \"\" term lies between \"\" and \"\".

\

At \"\".

\

Substitute \"\" in the function.

\

\"\"

\

Power property of logarithm : \"\".

\

\"\"

\

Property of logarithm : \"\".

\

\"\"

\

For  \"\".

\

\"\"

\

\"\"

\

Thus, the interval of \"\" is \"\".

\

\"\"

\

(d)

\

Since the function \"\" is negative, consider \"\".

\

\"\"

\

Take exponent with base \"\" on each side.

\

\"\"

\

Inverse property of logarithm : \"\".

\

\"\"

\

At \"\".

\

\"\"

\

Thus, the interval is \"\".

\

\"\"

\

(e)

\

If the function is increased by a factor \"\", then consider the \"\" term as \"\".

\

Thus, the function \"\".

\

\"\"

\

Quotient property of logarithm : \"\".

\

\"\"

\

\"\"

\

Thus, \"\" must be raised by a factor \"\".

\

\"\"

\

(f)

\

The functions are \"\" and \"\".

\

Consider \"\".

\

 \"\"

\

Consider \"\".

\

\"\"

\

Find the ratio between \"\" to \"\".

\

\"\"

\

Thus, the ratio between \"\" to \"\" is \"\".

\

\"\"

\

(a) Domain of the function \"\" is \"\".

\

(b) The inverse of the function is \"\".

\

(c) The interval of \"\" is \"\".

\

(d) The interval is \"\".

\

(e)  \"\" must be raised by a factor \"\".

\

(f) The ratio between \"\" to \"\" is \"\".