\"\"

\

(a)

\

The integral is \"\".

\

\"\"

\

Let \"\".

\

\"\"

\

Apply derivative on both sides.

\

\"\".

\

The derivative power rule.

\

\"\".

\

\"\".

\

Substitute \"\".

\

\"\"

\

Substitute \"\" and \"\".

\

\"\".

\

The closest looking one is \"\" where \"\" would be \"\", however this woludnt work because there would have to be an \"\" in the numerator.

\

Therefore, the integral cannot be determined for the function \"\".

\

\"\"

\

(b)

\

The integral is \"\".

\

\"\"

\

Let \"\".

\

Apply derivative on each side.

\

\"\"

\

\"\"

\

\"\"

\

Substitute \"\" and \"\".

\

\"\"

\

\"\"

\

Integrals involving inverse trigonometric function :\"\".

\

\"\"

\

\"\"

\

Substitute \"\".

\

\"\"

\

\"\".

\

\"\"

\

(c)

\

The integral is \"\".

\

Let \"\".

\

Apply derivative on each side.

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Substitute \"\" and \"\".

\

\"\"

\

\"\"

\

\"\"

\

Substitute \"\".

\

\"\"

\

\"\".

\

Therefore, the integrals \"\" and \"\" can be found using the basic integration formulas.

\

\"\"

\

The integrals \"\" and \"\" can be found using the basic integration formulas.