\"\"

\

Let \"\" be the number of pounds of concentrate in the solution at any time \"\".

\

The number of gallons of solution in the tank at any time \"\" is \"\".

\

The tank loses \"\" gallons of solution per minute.

\

Therefore, the tank lose concentrate at the rate is \"\".

\

The solution gains concentrate at the rate \"\".

\

Thereforem, the net rate of change is \"\".

\

(a)

\

\"\".

\

Substitute \"\", \"\", \"\" and \"\".

\

\"\"

\

\"\"

\

\"\".

\

The equation is in the form of \"\".

\

The differential equation is a first order linear differential equation.

\

Solution of the first order linear differential equation is \"\" is \"\".

\

Here \"\" and \"\".

\

Find \"\".

\

\"\"

\

\"\".

\

\"\"

\

The solution of differential equation is \"\".

\

Substitute \"\" and \"\".

\

\"\"

\

\"\"

\

\"\".

\

Substitute \"\".

\

\"\"

\

\"\"

\

\"\".

\

Substitute \"\" in \"\".

\

\"\".

\

\"\"

\

(b) Find the time at which the amount of concentrate in the tank reaches \"\".

\

The amount of concentrate in the tank reaches \"\".

\

Substitute \"\" in \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

(c) Find the quantity of concentrate in the solution as \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

(a) \"\".

\

(b) \"\".

\

(c) \"\".