\"\"

\

A 200 gallon tank is half full.

\

Thus, \"\" gallon.

\

At time \"\", tank contains \"\" pounds of concentrate per gallon.

\

Concentrate per gallon enters into the tank \"\" gallons per minute.

\

The solution mixture is withdrawn at \"\" gallons per minute.

\

(a)

\

Volume of the solution at any time \"\" is given by \"\".

\

Find the time when tank be full, \"\".

\

\"\"

\

Tank is full in  \"\".

\

\"\"

\

(b)

\

\"\".

\

Substitute corresponding values in the above expression.

\

\"\"

\

\"\"

\

Write the differential equation in the standard from \"\".

\

Here \"\" and \"\".

\

Solution of first order linear differential equation \"\" is \"\".

\

Where integrating factor \"\".

\

Find integrating factor.

\

\"\"

\

\"\"

\

Integrating factor \"\".

\

Solution of the differential equation is

\

\"\"

\

\"\".

\

\"\"

\

Find the constant by applying initial conditions.

\

At time \"\", amount of concentrate in the solution \"\".

\

\"\"

\

Particular solution is \"\".

\

Tank is full at \"\".

\

\"\"

\

\"\"

\

\"\".

\

At the time of tank is full, pounds of concentrate is \"\"

\

\"\"

\

(c)

\

Volume of the solution at any time \"\" is given by \"\".

\

Find the time when tank be full, \"\".

\

\"\"

\

Tank is full in \"\".

\

Consider \"\".

\

Here \"\".

\

\"\"

\

Integrating factor \"\".

\

Here \"\" and \"\".

\

Solution of the differential equation is

\

\"\"

\

\"\"

\

Find the constant by applying initial conditions.

\

At time \"\", amount of concentrate in the solution \"\".

\

\"\"

\

Particular solution is \"\".

\

Tank is full at \"\" mins.

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

(a) \"\".

\

(b) \"\".

\

(c) \"\".