\"\"

\

The function is \"\".

\

Observe the graph :

\

When we rotate a thin horizantal strip as shown in the figure about the \"\" axis, we get a disc with radius \"\".

\

The width of the disc is \"\".

\

The volume of the solid of revolution is \"\".

\

From the graph, \"\" and \"\".

\

Substiute the values in \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Therefore, the integral that gives the volume of the solid formed by revolving the region about the \"\"-axis is \"\".

\

\"\"

\

\"\".