\"\"

\

The arc equation is \"\" on interval \"\".

\

The arc is revolved about the line \"\".

\

(a) Find the volume of the resulting solid as a function of \"\".

\

The volume of the solid generated revolving about the line \"\".

\

Washer method:

\

\"\".

\

Here outer radius \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

(b)

\

Graph the function \"\" and label the minimum point.

\

Graph:

\

\"\"

\

Observe the graph:

\

The minimum volume is \"\" for \"\".

\

\"\"

\

(c)

\

Volume of the solid is \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

Find the minimum or maximum value by equating \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\", the function \"\" has relative minimum.

\

Therefore, the minimum volume at \"\".

\

\"\"

\

(a) \"\".

\

(b) Graph of the function \"\":

\

\"\"

\

\"\".

\

(c) \"\".