\"\"

\

Therom of Pappus :

\

Let \"\" be a region in a plane and and let \"\" be the same plane such that L does not intersect with the interior of \"\".

\

If \"\" is the distance between centeriod \"\" and the line then the volume \"\" of the solid of the revolution formed by revolving \"\" about the line is \"\".

\

\"\"

\

The region is \"\".

\

Radius of the circle \"\".

\

Area of the circle is \"\".

\

Volume \"\" of the solid of the revolution formed by revolving \"\" about the line is \"\".

\

Where \"\", distance between center of circle and \"\"-axis.

\

Area \"\".

\

Now find the volume by substituting the values in the formula \"\".

\

\"\"

\

\"\"

\

The torus formed by revolving the circle \"\" about the \"\"-axis is \"\".