\"\"

\

Therom of Pappus :

\

Let \"\" be a region in a plane and and let \"\" be the same plane such that L does not intersect with the interior of \"\".

\

If \"\" is the distance between centeriod \"\" and the line then the volume \"\" of the solid of the revolution formed by revolving \"\" about the line is \"\".

\

\"\"

\

The region is \"\"\"\" and \"\".

\

Graph:

\

Graph the equations \"\"\"\" and \"\".

\

\"\"

\

Observe the graph:

\

The area bounded by the three equations is \"\".

\

Substitute \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

The distance between the centriod and the \"\"-axis is \"\".

\

Here \"\".

\

Substitute \"\" and \"\".

\

\"\".

\

\"\"

\

Consider \"\".

\

\"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

\"\"

\

The volume of the solid of the revolution is \"\".

\

Substitute \"\" and \"\".

\

\"\"

\

\"\".

\

\"\"

\

\"\".