\"\"

\

The equations are \"\", \"\", \"\" and \"\".

\

Method of disk :

\

The volume of the solid \"\" is \"\", where \"\" is the cross sectional area of the solid \"\".

\

\"\".

\

Radius \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\" cubic units.

\

Volume of the solid is \"\"cubic units.

\

\"\"

\

The equations are \"\", \"\", \"\" and \"\".

\

Centroid of the region is

\

\"\"

\

Area \"\".

\

\"\"

\

\"\"

\

\"\" sq-units.

\

\"\"

\

\"\"

\

Find the integral using integration by parts.

\

Integration by parts :\"\".

\

Consider \"\" and \"\".

\

Consider \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\".

\

Consider \"\".

\

Apply integral on each side.

\

\"\"

\

\"\".

\

Substitute corresponding values in \"\".

\

\"\"

\

\"\"

\

Find \"\" co-ordinate of the centroid.

\

\"\"

\

Centriod  \"\".

\

\"\"

\

Volume of the solid is \"\"cubic units.

\

Centriod  \"\".