\"\"

\

Observe the figure :

\

Vertex of the ellipse are \"\".

\

The ellipse is symmentric about the \"\" axis.

\

Therefore the area is equal to \"\" times the area of the top portion, which is given by the area of the top portion is integral of the function from \"\" to \"\".

\

\"\"

\

Top portion area is also is symmentric about the \"\" axis.

\

Therefore the area is equal to \"\" times the area of the first quadrant from \"\" to \"\".

\

\"\"

\

\"\"

\

Apply the trignometric substitution to evaluate the integral.

\

Let \"\".

\

\"\"

\

When \"\", \"\" then \"\".

\

When \"\", \"\" then \"\".

\

Therefore the limits are \"\" to \"\".

\

\"\"

\

\"\".

\

\"\"

\

Consider \"\".

\

Evaluate the function by splitting the integral into two parts.

\

Apply the formula : \"\".

\

\"\"

\

\"\"

\

The area enclosed by the ellicpse is \"\".

\

\"\"

\

The area enclosed by the ellicpse is \"\".