The series is .
(a)
\Consider the fraction .
Solve the fraction using partial fractions.
\Equate the constant terms.
\.
Equate the coefficients of .
Substitute .
.
.
.
The sum of the series is
.
Find .
.
(b)
\Graph the partial sum function is .
Observe the graph :
\Tabulate the values for different values of
.
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
(c)
\Find the first ten terms of the sequence.
\The sum of series is .
If then
.
If then
.
If then
.
If then
.
If then
.
If then
.
If then
.
If then
.
If then
.
If then
.
Graph :
\Graph the values .
(d)
\The terms of the series decrease in magnitude slowly.
\So, the sequence of partial sums approaches the sum slowly.
\(a) .
(b)
\![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
![]() | \
(c)
\Graph :
\Graph the values .
(d) The terms of the series decrease in magnitude slowly.So, the sequence of partial sums approaches the sum slowly.