\"\"

\

The integral Test :

\

If \"\" is positive, continuous and decreasing for \"\" and \"\" then \"\" and \"\"either both converge or both diverge.

\

\"\"

\

The integral series is \"\".

\

Let the function be \"\".

\

Find the derivative of the function.

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\" is positive, continuous and decreasing for \"\".

\

\"\" satisfies the conditions of Integral Test.

\

Integral Test is applicable for the series.

\

\"\"

\

Integral Test :

\

Consider \"\".

\

\"\".

\

Consider integral \"\".

\

Solve the integral by using integration by parts.

\

Formula for integration by parts is \"\".

\

Here \"\" and \"\".

\

Consider \"\".

\

Apply derivative on each side with respect to \"\".

\

\"\"

\

\"\"

\

\"\".

\

Consider \"\".

\

Apply integral on each side.

\

\"\"

\

\"\".

\

Substitutecorresponding values in \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

\"\".

\

Therefore, the series \"\" is converges.

\

\

The series \"\" is converges.