\"\"

\

The integral Test :

\

If \"\" is positive, continous, and decreasing for \"\" and \"\" then \"\" and \"\"either converge or both diverge.

\

\"\"

\

The series is \"\".

\

The summation notation of series is \"\".

\

Let the function be \"\".

\

The function is continuous and positive for all values of \"\".

\

Apply integration by parts formula :\"\".

\

Here \"\" then \"\".

\

Here \"\" then \"\".

\

\"\"

\

\"\"

\

\"\"

\

\"\"

\

Apply L\"\"Hopital\"\"s Rule to bring the limit to the determinant form.

\

For \"\" If \"\" or \"\" then \"\".

\

\"\"

\

The series is converges.

\

\

The series is converges by the integral test.