\"\"

\

Direct comparison test :

\

Let \"\" for all \"\".

\

1.If \"\" convergence, then \"\" convergence.

\

2.If \"\" diverges, then \"\" diverges.

\

\"\"

\

The series is \"\".

\

Here \"\" and \"\".

\

Observe that \"\".

\

The series\"\" is in the form of geometric series.

\

The general form of geometric series is \"\".

\

Here \"\" and \"\".

\

\"\" is geometric series.

\

\"\"

\

Convergence of a geometric series :

\

A geometric series with common ratio \"\" diverges if \"\".

\

If \"\" then the series converges to the sum \"\".

\

\"\" with ratio \"\".

\

The series is converges to the sum of series.

\

\"\".

\

The series is converges to \"\".

\

Using the direct comparision test if the series \"\" is converges, then \"\" is converges.

\

Therefore, the series \"\" is converges.

\

\"\"

\

The series \"\" is converges.