\"\"

\

Let \"\" and \"\" be a real numbers and let \"\" be a positive integer.

\

\"\".

\

Consider \"\".

\

Limit of \"\" as \"\" approaches \"\" does not depend on the value of \"\" at \"\".

\

The function \"\".

\

\"\"

\

Now we prove the limit \"\" using \"\" definition.

\

To show that for each \"\", there exists a \"\" such that \"\", whenever \"\".

\

Consider \"\"

\

\"\"

\

Consider \"\"

\

\"\"

\

\"\".

\

\"\"

\

Observe the relationship between two absolute values \"\" and \"\".

\

\"\" inequality is always true irrespective of values of \"\".

\

Therefore  \"\" then \"\" for any values of \"\".

\

Hence  \"\" for all values of \"\".

\

\"\"

\

\"\".