\"\"

\

The function is \"\" in the interval \"\".

\

\"\"

\

It follows that \"\"  and \"\".

\

we can therefore apply intermediate value theorem to conclude that there

\

must be some c in \"\" such that \"\"

\

\"\"

\

Now we use bisection method for approximating the real zeros of a continuous function.

\

In this approximation if \"\" , then the zero must lie in the interval \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"
\"\" \"\"\"\"\"\"
\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"
\"\"\"\"\"\"\"\"
\

The approximated value of zero is \"\" \"\".

\

\"\"

\

Now we have to find out zero value using  graphical approach.

\

\"\"

\

From the above graph the zero value is nearly \"\" , it is located between \"\" and \"\".

\

\"\"

\

To find out the accurate value of value we further need to zoom the graphing utility as shown below.

\

\"\"

\

We clearly observe from the above graph the zero value is nearly \"\".

\

\"\"

\

The zero value approximated to two decimal points is \"\".

\

The zero value approximated to four decimal points is \"\".