\"\"

\

A removable discontinuity is one at which the limit of the function exists but does not equal to the value of the function at that point.

\

A non removable discontinuity is any discontinuity which is not removable.

\

(a) A function with a non removable discontinuity at \"\".

\

Let the function is \"\".

\

\"\"

\

\"\" is undefined at \"\".

\

\"\"

\

(b) A function with a removable discontinuity at \"\".

\

Let the function is \"\".

\

The denominator of the function should not be zero.

\

\"\".

\

The function has discontinuity at \"\".

\

Rewrite the function as \"\".

\

Cancel the common terms.

\

\"\".

\

The function is continuous for all values of \"\".

\

The removable discontinuity at \"\".

\

\"\"

\

(c) A function that have both removable discontinuity and non removable discontinuity.

\

Let the function is \"\".

\

The denominator of the function should not be zero.

\

\"\"

\

The function is discontinuous at \"\" and \"\".

\

Rewrite the function as \"\".

\

Cancel the common terms.

\

\"\".

\

The function is continuous for all values of \"\", except \"\".

\

The function has removable discontinuity at \"\".

\

The function has non removable discontinuity at \"\".

\

\"\"

\

(a). Example function with a non removable discontinuity at \"\" is \"\".

\

(b). Example function with a removable discontinuity at \"\" is \"\".

\

(c). Example function that have both removable discontinuity and non removable discontinuity \"\".