\"\"

\

The function is \"\".

\

Find \"\".

\

\"\" definition :

\

\"\" means that for every \"\", there exists a \"\", such that for every \"\", the expression \"\" implies \"\".

\

Consider \"\".

\

\"\"

\

\"\".

\

If \"\" is rational, then \"\".

\

\"\"

\

\"\".

\

If \"\" is irrational, then \"\".

\

\"\".

\

let \"\".

\

\"\".

\

\"\"

\

Observe the relationship between two absolute values \"\" and \"\".

\

\"\"

\

\"\"

\

\"\"

\

Therefore, \"\".

\

As \"\" tends to \"\", \"\" approaches to \"\".

\

\"\".

\

The function \"\" is continuous at \"\".

\

\"\"

\

\"\" is does not exist, because there are infinite number of rational and irrational numbers near to \"\"\"\".

\

The function value of these infinite numbers are not approaching a unique value.

\

If \"\" is rational the function value is \"\".

\

If \"\" is irrational the function value is \"\", \"\" is any non zero real number.

\

Therefore, \"\" does not exist.

\

The function is not continuous for all values of \"\", except \"\".

\

The function \"\" is continuous only at \"\".

\

\"\"

\

The function \"\" is continuous only at \"\".