\"\"

The function \"f\\left.

Find \"\"\"f\\left.

Substitute \"x=a\" in \"f\\left.

\"f\\left.

\"\"

Find \"f\\left.

Substitute \"x=a+h\" in \"f\\left.

\"f\\left

Apply the binomial expansion: \"(a+b)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\".

Here \"a=a,.

\"f\\left

\"f\\left.

\"\"

Find  \"\\frac{f\\left.

Substitute the values of \"f\\left and \"f\\left.

\"\\frac{f\\left

                                 \"=\\frac{-a^5-5a^4h-10a^3h^2-10a^2h^3-5ah^4-h^5-a^5}{h}\"

                                 \"=\\frac{h(-5a^4-10a^3h-10a^2h^2-5ah^3-h^4)}{h}\"

\"\\frac{f(a+h)-f(a)}{h}=-5a^4-10a^3h-10a^2h^2-5ah^3-h^4\".

\"\"

\"f\\left.

\"f\\left.

\"\\frac{f(a+h)-f(a)}{h}=-5a^4-10a^3h-10a^2h^2-5ah^3-h^4\".