\"\"

\

(a).

\

Let the length of the block\"\",

\

            width of the block\"\",

\

            height of the block\"\".

\

And \"\" be the equal amount of clay removed from the block.

\

Now length of the block\"\",

\

        width of the block\"\",

\

        height of the block\"\".

\

Volume of the block, \"\".

\

 \"\".

\

\"\"

\

The polynomial function is  \"\".\"\"

\

(b).

\

Length of the box must be \"\" or \"\".

\

Height of the box must be \"\" or \"\".

\

Width of the box must be \"\" or \"\".

\

Therefore, the domain is \"\".

\

Subustiute the values of \"\" in the obtained polynomial equation  to get the values of \"\"

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"\"\"
     \"\"       \"\"\"\"\"\"
 \"\"    \"\"\"\"
  \"\"      \"\"\"\"
  \"\"         \"\" \"\"
    \"\"       \"\" \"\"
  \"\"        \"\" \"\"
\

Graph : 

\

(1)  Draw the coordinate planes.

\

(2)  Plot the points

\

(3) Connect the points with the smooth curve.

\

\"\"

\

\"\"

\

(c).

\

The original volume of the block is \"\".

\

\"\"

\

Amount of volume reduced by esteban is \"\" of the original volume.

\

\"\"

\

Now the volume of the new block is \"\".

\

Now the equation can be written as \"\"

\

\"\".\"\"

\

(d).

\

Consider \"\".

\

Let \"\" and \"\".

\

Draw a coordinate plane.

\

Graph the functions \"\" and \"\" in the same axis.

\

Graph :

\

\"\"

\

Observe the graph :

\

The two functions are intersects at \"\".

\

Therefore, esteban should take about \"\" ft from each dimension.\"\"

\

(a).

\

The polynomial function is  \"\".

\

(b).

\

Graph : 

\

\"\"

\

(c).

\

\"\".

\

(d).

\

Esteban should take about \"\" ft from each dimension.