\"\"

\

The function is \"\".

\

The domain of the function is set of all values at which the function is continuous.

\

The denominator should not be equal to \"\".

\

\"\"          \"\"

\

Therefore the function is undefined at the real zero of the denominator \"\".

\

The real zeros of \"\" is \"\".  

\

Thus, the function is continuous for all real numbers except \"\" and \"\".

\

Therefore Domain, \"\".

\

\"\"

\

Check for vertical asymptotes :

\

Determine whether \"\" is a point of infinite discontinuity.

\

Find the limit as \"\" approaches \"\" from the left and the right.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\" \

\"\"

\
\"\"\"\"
\"\"\"\"
\"\"\"\"
\

Because \"\"  and \"\"is a vertical asymptote of \"\".

\

\"\"

\

Determine whether \"\" is a point of infinite discontinuity.

\

Find the limit as \"\" approaches \"\" from the left and the right.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\

 

\

Because \"\"  and \"\" is a vertical asymptote of \"\".

\

\"\"

\

Check for horizantal asymptotes :

\

Draw the table to determine the end behaviour of \"\".

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\"\"\"
\"\" \

\"\"

\
\

From the table \"\" and \"\",\"\" is a horizantal asymptote of \"\". 

\

\"\"

\

Domain, \"\".

\

Vertical asymptotes, \"\".

\

Horizantal asymptote, \"\".