\"\"

The function is \"f(x)=2^{-x}\".

Make the table of values to find ordered pairs that satisfy the function.

Choose values for \"x\" and find the corresponding values for \"y\"

\"x\" \"f(x)=2^{-x}\" \"(x,
\"-4\" \"f(-4)=2^{-(-4)}=16\" \"(-4,
\"-3\" \"f(-3)=2^{-(-3)}=8\" \"(-3,
\"-2\" \"f(-2)=2^{-(-2)}=4\" \"(-2,
\"0\" \"f(0)=2^{0}=1\" \"(0,
\"2\" \"f(2)=2^{-(2)}=0.25\" \"(2,
\"4\" \"f(4)=2^{-(4)}=0.06\" \"(4,
\"6\" \"f(6)=2^{-(6)}=0.01\" \"(6,
\"8\" \"f(8)=2^{-(8)}=0.003\" \"(8,

\"\"

Graph:

1. Draw a coordinate plane.

2. Plot the coordinate points.

3. Then sketch the graph, connecting the points with a smooth curve.

\"\"

Observe the above graph :

Domain of the function is all real numbers.

Range of the function is \"(0,.

The function does not have the x-intercept.

\"y\" - intercepts is \"1\".

The line \"y=L.\" is the horizontal asymptote of the curve \"y=f(x)\".

if either \"\\lim_{x or \"\\lim_{x.

\"\\lim_{x

\"\\\\\\lim_{x

\"=0\".

\"y=0\" is the horizontal asymptote of the function.

Observe the above graph the function does not have vertical asymptote.

End behavior : \"\\lim_{x\\rightarrow and \"\\lim_{x\\rightarrow.

The function is continuous for all real numbers.

Decreasing on the interval : \"\\left.

\"\"

The graph of the function \"f(x)=2^{-x}\" is :

\"\"

Domain of the function is all real numbers.

Range of the function is \"(0,.

The function does not have any \"x\" -intercept.

\"y\" - intercepts is \"0\"

Horizontal asymptote of the function is \"y=0\".

End behavior : \"\\lim_{x\\rightarrow and \"\\lim_{x\\rightarrow.

The function is decreasing over the interval : \"\\left.