\"\"

The function is \"r(x)=5^{x}\".

Make the table of values to find ordered pairs that satisfy the function.

Choose values for \"x\" and find the corresponding values for \"y\"

\"x\" \"r(x)=5^{x}\" \"(x,
\"-4\" \"f(-4)=5^{(-4)}=0.001\" \"(-4,
\"-3\" \"f(-3)=5^{(-3)}=0.008\" \"(-3,
\"-2\" \"f(-2)=5^{(-2)}=0.04\" \"(-2,
\"-1\" \"f(-1)=5^{(-1)}=0.2\" \"(-1,
\"0\" \"f(0)=5^{0}=1\" \"(0,
\"1\" \"f(1)=5^{(1)}=5\" \"(1,
\"1.5\" \"f(1.5)=5^{(1.5)}=11.18\" \"(1.5,

\"\"

Graph:

1. Draw a coordinate plane.

2. Plot the coordinate points.

3. Then sketch the graph, connecting the points with a smooth curve.

\"\"

Observe the above graph :

Domain of the function is all real numbers.

Range of the function is \"(0,.

The function does not have the x-intercept.

\"y\" - intercepts is \"1\".

The line \"y=L.\" is the horizontal asymptote of the curve \"y=f(x)\".

If either \"\\lim_{x or \"\\lim_{x.

\"\\lim_{x

\"\\\\=\\5^{-\\infty}}\\\\\\\\=\\frac{1}{5^{\\infty}}\"

\"=0\".

\"y=0\" is the horizontal asymptote of the function.

Observe the above graph vertical asymptote does not exist.

End behavior : \"\\lim_{x\\rightarrow and \"\\lim_{x\\rightarrow.

The function is continuous for all real numbers.

Increasing on the interval : \"\\left.

\"\"

The graph of the function \"r(x)=5^{x}\" is :

\"\"

Domain of the function is all real numbers.

Range of the function is \"(0,.

\"y\" - intercepts is \"1\".

Horizontal asymptote of the function is \"y=0\".

End behavior : \"\\lim_{x\\rightarrow and \"\\lim_{x\\rightarrow.

The function increasing over the interval : \"\\left.