\"\" \

The function is \"h(x)=(0.2)^{x+2}\".

\

Make the table of values to find ordered pairs that satisfy the function.

\

Choose values for \"x\" and find the corresponding values for \"y\"

\

\ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\"x\"\"h(x)=(0.2)^{x+2}\"\"(x,
\"-3.5\"\"f(-3.5)=(0.2)^{-3.5+2}=11.18\"\"(-3.5,
\"-3\"\"f(-3)=(0.2)^{-3+2}=5\"\"(-3,
\"-2\"\"f(-2)=(0.2)^{-2+2}=1\"\"(-2,
\"-1\"\"f(-1)=(0.2)^{-1+2}=0.2\"\"(-1,
\"0\"\"f(0)=(0.2)^{0+2}=0.04\"\"(0,
\"1\"\"f(1)=(0.2)^{1+2}=0.008\"\"(1,
\"2\"\"f(2)=(0.2)^{2+2}=0.001\"\"(2,
\"3\"\"f(3)=(0.2)^{3+2}=0.0003\"\"(3,
\

\"\"

\

Graph:

\

1. Draw a coordinate plane.

\

2. Plot the coordinate points.

\

3. Then sketch the graph, connecting the points with a smooth curve.

\

\"\"

\

Observe the above graph :

\

Domain of the function is all real numbers.

\

Range of the function is \"(0,.

\

The function does not have any \"x\" - intercept.

\

\"y\" - intercepts is \"0.04\".

\

The line \"y=L.\" is the horizontal asymptote of the curve \"y=f(x)\".

\

if either \"\\lim_{x or \"\\lim_{x.

\

\"\\lim_{x

\

\"\\\\=(0.2)^{-\\infty+\\2}

\

\"=0\".

\

\"y=0\" is the horizontal asymptote of the function.

\

Observe the above graph vertical asymptote does not exist.

\

End behavior : \"\\lim_{x\\rightarrow and \"\\lim_{x\\rightarrow.

\

The function is continuous for all real numbers.

\

Decreasing on the interval : \"\\left.

\

\"\"

\

The graph of the function \"h(x)=(0.2)^{x+2}\" is :

\

\"\"

\

Domain of the function is all real numbers.

\

Range of the function is \"(0,.

\

\"y\" - intercepts is \"0.04\".

\

Horizontal asymptote of the function is \"y=0\".

\

End behavior : \"\\lim_{x\\rightarrow and \"\\lim_{x\\rightarrow..

\

The function is continuous for all real numbers.

\

The function  \"h(x)\" decreasing over the interval : \"\\left.